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The spreading of thin liquid films on a water-air interface 

By M. FODAt  A N D  R. G. COX 
Department of Civil Engineering and Applied Mechanics, McGill University, 

Montreal, Quebec, Canada 

(Received 21 August 1979 and in revised form 26 February 1980) 

The spreading on a water-air interface of a thin liquid film is examined for the situation 
in which surface tension gradients drive the motion. A similarity solution is obtained 
numerically for unidirectional spreading when some general restrictions concerning 
the form of the liquid film constitutive relation is made. This solution gives the 
size of the film as a function of time and also the velocity and thickness distribution 
along the spreading film. Experiments are performed which show good agreement 
with the theory. 

1. Introduction 
The understanding of the phenomenon of the spreading of liquid layers, on the 

surface of an'immiscible supporting liquid has growing importance in ecology, environ- 
mental engineering and in the chemical and petro-chemical industry. For example, it 
is important to know how the size of an oil slick, resulting from oil spillage on the sea 
(e.g. from a leaking offshore oil well or from the wreck of an oil tanker), grows with time. 

As a first step in the understanding of the hydrodynamics of spreading oil layers, 
Fay (1969) identified three basic mechanisms of spreading, and then, by simple 
dimensional reasoning, showed that early in the spreading of a large volume of liquid, 
gravitational forces cause the spreading which is resisted by the inertia forces arising 
from the slick's acceleration. As time elapses, viscous drag due to the substrate re- 
places inertia as the retarding force. Then after very long time, when the oil layer is 
very thin, possibly molecularly thin, surface tension replaces gravity as the driving 
agent. This latter spreading mechanism was further investigated by Di Pietro, Huh & 
Cox (1978) who derived the governing equations for such spreading films (which follow- 
ing Di Pietro et al. will be referred to as ' monolayers ' whether they are of one or many 
molecules in thickness). Further spreading mechanisms may exist (Di Pietro et al. 
1978; Di Pietro & Cox 1979, 1980) in limited regions or under special situations (such 
as when the oil is very viscous). 

Di Pietro et al. (1978) argued that when oil (phase 1) spreads on the interface be- 
tween water (phase 2) and air (phase 3), a band of oil of submicron thickness (i.e. a 
monolayer) would form ahead of the bulk of the oil$. as a result of the imbalance of 

t Present address: Department of Civil Engineering, MIT., Cambridge, Mass., U.S.A. 
$ The bulk of the oil is defined as that portion of the slick which is sufficiently thick so that 

(i) the oil may be considered as a continuum and (ii) the oil-water and oil-air interfaces have well 
defined constant interfacial tensions. 
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FIQTJRE 1. Spreading of monolayer on the surface of calm water with bulk 
boundary fixed at x = 0. 

the interfacial tension forces at the contact line of the three phases (oil, water and air) 
which exists when the net spreading coefficient S, defined as (Harkins 1952), 

sl a23 - (a12 -k a13) (1.1) 

is positive; aij is the interfacial tension between phases i andj.  
The net force difference S, is assumed to be distributed along the monolayer so 

that the surface tension cr of the monolayer covered water surface varies from cr23 at 
the leading edge of the monolayer to the sum (cr12 + v13) at the boundary between the 
monolayer and the bulk of the oil (this boundary will be referred to as the bulk 
boundary). Assuming that there are no hysteresis or time dependent effects (i.e. 
there is, for example, no evaporation or dissolution of the oil in the water), the value 
of (r is related to the surface concentration h (volume,per unit area) of the oil by the 
monolayer equation of state (Adamson 1967) so that 

a = a@). (1.2) 

Since h is zero at the leading edge and becomes very large (compared with its typical 
value) at the bulk boundary, the function a(h) must satisfy 

a(0)  = ~ 9 3 ,  lim CT = crlz + ~ 1 3 .  
h + w  

In  the present paper, we consider a monolayer spreading on a quiescent water 
surface in a unidirectional manner as would occur on water contained in a long channel. 
The bulk boundary is assumed to be held fixed at a certain position as the monolayer 
spreads. In  $02-6 a similarity solution to this problem is found while in $$7-9 an 
experiment is described which duplicates this situation. Good agreement is obtained 
between the theory and experiment. 

2. Similarity solution 
A monolayer is assumed to be spreading in the positive-2 direction (figure 1) on 

water initially a t  rest with the bulk boundary stationary at x = 0 so that the mono- 
layer length L in the x direction is a function of time t .  We take the z-axis to be verti- 
cally downwardswith z = 0 a t  thewater sudace, and assume novariation in monolayer 
thickness in the y direction. The oil-layer thickness h is then both a function of position 
2 and time t .  Furthermore oil must be continually supplied to the monolayer a t  x = 0 
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since the size and hence the volume of oil contained in the monolayer is expected to 
increase continuously with time. 

If the monolayer constitutive relation ( I  .2) is satisfied by this spreading monolayer, 
it may be put in dimensionless form by letting 

h* = h / H ,  

where H is a characteristic value of h. Thus 

a* = a*(h*) 

where 0 6 v* 6 1 with v*(O) = 1 and v*(h*) + 0 ash* --f 00. 

This dimensionless constitutive relation (2.2) for the oil film is assumed to be given 
in the following analysis. 

If we let u, w be the velocity components in the x, z directions respectively, the 
governing equations for the induced flow in the water, the time-dependent boundary- 
layer equations, may be written as 

au aw* -+- = 0, 
ax az* 

(2.3) 

where the variables W* and z* are ‘scaled’ variables which are related to w and z by 

z* = z/vg, w* = w/v#, 

where vz is the kinematic viscosity of the water. 
Conservation of mass for the oil monolayer requires, 

ah* a -+- (u,h*) = 0 at ax 

where uo(x, t )  is the oil velocity (assumed constant across the oil layer in the z direction). 
The horizontal balance of forces in the monolayer gives (Di Pietro et al. 1978) 

ac* 
ax 

s -+To = 0 

where 7, is the shear stress exerted by the water on the oil in the x direction. 
At  the leading edge x = L and at the bulk boundary x = 0 the conditions 

h* = 0, v* = 1 at x = L and h*+co, v*+O as x +  0 ( 2 . 7 ~ )  

must be satisfied, while the kinematic boundary condition at the monolayer (which 
reduces to a condition of zero normal velocity since the interface is essentially hori- 
zontal) and the condition of no flow below the boundary layer (z  -+ m) yields 

w*=O on z * = O ;  u j - 0  as z*+oo. (2.7b) 

In addition since the velocity and stress in the water at the monolayer z = 0 are u, 
and 70 respectively, 

( 2 . 7 ~ )  
au v i  

u = uo, a z * = - ~ o  on z * =  0, 
Pz 

2-2 
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where p2 is water viscosity. It should be noted that the characteristic layer thickness 
H does not appear in the above equations and boundary conditions. This implies 
that the velocity field and monolayer length do not depend on one’s choice of H and 
only upon the dimensionless constitutive relation u* = u*(h*). Thus the value of H 
is arbitrary and can be chosen in any suitable manner. The last boundary condition 
in ( 2 . 7 ~ )  may be written as 

Hence, the solution depends only on the parameter a = v ~ S , / p ,  so that, using 
dimensional analysis, we obtain for the monolayer length 

L cc pit* (2.8) 

and for the velocity field in the water, 

where 

- v = ti@, Z), w = f2(5, 5) 

5 = path, 73 = v,ttd-w, 

3 = p - w x ,  f = v , w x .  

(2.9a) 

(2.9b) 

In  terms of these similarity variables the equations (2.3) and (2.4) for the motion 
in the boundary layer may be written as 

aii az 
az ax 
-+-= 0 

(2.1 Oa) 

(2. l ob )  

so that the number of independent variables is reduced from three (x,z,t) to two 
(ii?,Z). Furthermore, by introducing a dimensionless stream function 2, defined by 

(2.11) 

so that the continuity equation (2.1071) is automatically satisfied, it is seen that (2.10~2) 
may be written in the form 

(2.12) - -  
- ~ x , s - ~ ~ , 2 s - ~ ~ , , , + x , s x , ~ s - x , b x , s s  = X,m* 

In  a similar manner the monolayer equations (2.5) and (2.6) become 

- -@I2  $+ ( j g * ) , a  = 0, (2.13a) 

2,ss = -a,: on Z = 0, (2.13b) 

while the boundary conditions (2.7) become 

(2.14) 

a* = 1, 

a * - - f O ,  h*-+co as f + O ,  

x = O  on Z = O ,  x , $ + O  as Z - t c o ,  

xp = 5, and x,ss = ‘i, on 5 = 0, 

h* = 0 at the leading edge where 5 = 5* say, 



Thin liquid films spreading on an interface 37 

where 

and 
( 2 . 1 5 ~ )  

(2.15b) 

With P = P* at the leading edge, the length L of the monolayer is found from (2.9b) 
to be 

L = 5* p%. (2.16) 

Thus the problem is reduced to solving (2.12) and (2.13a, b )  together with the boun- 
dary conditions (2.14) ,with the constitutive relation (2.2) being given. 

It is instructive to examine the vorticity equation for the flow (u, w). Since, due to 
the boundary-layer approximation, awlax 4 au/az  the vorticity w N au laz ,  so that 
in terms of the similarity variables 

- 
= aU/a2 where a = v t p - h h .  

If ( 2 . 1 0 ~ )  is differentiated with respect to 2, the vorticity equation is obtained as 

a2G a a -  -- - - [ ( U - ~ P ) a ] + - [ ( w - ~ 2 ) a ] + ~ a .  
a22 a3 a2 

(2.17) 

The first two terms on the right-hand side can be considered as representing the 
convection of i;i in a flow field (G - $P, W - 42) whilst the last term represents the 
destruction of W. The left-hand side represents diffusion of W. Thus it is seen that the 
direction of vorticity convection in the Z direction depends on the sign of the quantity 
('iz - @). However,-by (2.16), the monolayer velocity at  the leading edge in similarity 
variables is 

Also, the monolayer continuity equation ( 2 . 1 3 ~ )  may be written as, 

a - [(Uo - 2P) h*] + %h* = 0 
E 

which when integrated from to P* gives 

(Go - $5) h* = $ h* dP. Sjr 

(2.18) 

(2.19) 

Since the right-hand side of (2.19) is strictly positive (being zero only for = P*), 

(ao - $2) > 0 for 0 < E < %*. (2.20) 

If it is assumed that U, like its value Go on z = 0, is positive for all 2 at Z = 0 (and this 
will be later shown to be true when certain assumptions concerning the form of a*@*) 
are made), then 

(2.21) u - $ Z > O  forall2 at Z = O .  
- 
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If it is also assumed that ;ii near the leading edge (where E = E* - d with D small) is 
a monotonic function of Z (which will later be shown to be true), then 

G - @ < O  forall2 on E = Z * ,  (2.22) 

with ;ii - $E decreasing from zero at Z = 0 to - tx* as Z -+ co. Also 

Z - Q Z < O  as Z + c o  for 0 < 3 < Z * .  (2.23) 

Thus by (2.21), (2.22) and (2.23) it is seen that for the region 0 < 3 < E*, 5 > 0 the 
direction of the convection of W on the boundaries (not including z = 0) is everywhere 
into the region. Thus boundary layers must start forming (i.e. have zero thickness) 
at both E = 0 and 5 = P*, all the ‘vorticity’ G produced a t  Z = 0 being destroyed 
within the region (0 < Z Q Z*,Z > 0). 

The formation of these two boundary layers a t  both ends of the region, which is 
peculiar to this problem, means that one should not solve the boundary layer equations 
starting from either end (5 = 0 or 5 = E*) and proceed to the other. Instead the 
solution to the whole region should be obtained simultaneously in a manner similar 
to that necessary for an elliptic equation. Before obtaining the numerical solution by 
this means, it is necessary to find the asymptotic forms of the boundary layer near 
E = 0 and E = Z* due to the expected singuIar nature of the soIution at these points. 

3. Spreading behaviour near the bulk boundary Z = 0 

It follows from (2.19) that for 3 -+ 0 

(E0- 83) h* N R 

where K is a positive constant = 2 

We now assume that 

so that near 5 = 0, 

h* dZ. c* 
t i o / ( f E )  + co as E -+ 0 

Goh* N K 

giving the flow rate into the monolayer from the bulk as 

Near E = 0, we assume that I cc En where n must be less than unity to satisfy (2.20) 
and (3.1). Also for ah*/az < 0 as E -+ 0, n must be larger than or equal to zero [from 
(3.2)] so that 

O G n n l .  (3.4) 

Comparing the order of magnitude of the different terms in (2.10a), we see that the 
first three terms corresponding to the local time derivative &/at in (2.3) are of order 
of 2% while the convective terms are of order of E2’+-I. Thus as E -+ 0, the convective 
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terms dominate so that the boundary-layer equations (2.3) may, in the vicinity of 
the bulk boundary, be approximated by 

au au a 2 u  

i3X az* az*2' 
u-+w*-=- 

with 

and 

au aw* 
-+-= 0, ax az* 

u=A(t)s" ,  w = O  on z * = O  

u+O as z*-+00. 

Since the solution depends only on the parameter A(t) ,  the use of dimensional analysis 
gives 

(3.5) 
so that 

u = Asnf (l+ A*&-%) 

Now if we assume that as h -+ 00, the constitutive relation of the oil monolayer can 
be written as (Sheludko 1966) 

(T N ( ~ 1 2  + ~ 1 3 )  + Bh-9 (3.7) 

where B andp  are constants, then from (3.3) we have that h cc z - ~  so that 

Therefore, from (3.6) and (3.8) we obtain, 

1 n=- 
2 ~ - 3  (3.9) 

so that for 0 Q n < 1, we must have, 

2 < p g m .  (3.10) 

If (3.5) is expressed in terms of the similarity variables ti, 2, Z and use is made of the 
fact that T i  is a function of a: and Z only, it  is seen that A(t) has to be of the form 

( 3 . 1 1 ~ )  

(3.1 1 b )  

(3.1 1 c) 
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Substituting this into the time-independent boundary-layer equations (i.e. the equa- 
tion (2.12) without the first three terms), we obtain 

(2~-3 ) f” - (Y) ’+@- l ) f” f  = 0, (3.12a) 

the boundary conditions then being 

f = O  on r = O ,  

g ’ + O  as q+co, 

f = f ( O )  on 7 = 0. 

(3.12 b )  

This has a unique solution for any given value of f(0). Consider the differential 
equation 

( 2 ~ - 3 ) A ” ’ - ( h ‘ ) 2 + ( ~ - 1 ) A ” A  = 0 ( 3 . 1 3 ~ )  

for h(7) with the boundary conditions 

A = O ,  A ’ = 1  on r = O ,  

h ’ + O  as r-too. 
It is seen that f ( q )  is then 

f ( r )  = ( f ( O ) ) W f ( O ) + )  71. 

Integration between zero and E of the relation, 

yields 

The relation (3.7) may be written as 

a* = B*(h*)* as h*+co 

where B* = BH-PSil. Thus 

(3.13b) 

(3.14) 

(3.16) 

(3.16) 

(3.17) 

Using (3.2), this gives 

which when compared with (3.11 a )  yields 

From (3.11u), ( 3 . 1 1 ~ )  and (2.11) we obtain, 

which, using (3.14) gives, 
f’(0) = T(0) 

f’w = rf(o)iQh”(o). 

(3.19) 
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This when substituted into (3 .19)  gives, 

(3.20) 

From this we conclude that a unique solution in this region cannot be found inde- 
pendently of what happens throughout the rest of the monolayer. This is because the 
value off(0) depends on the value of 

/o" h* dE 

which can only be found if the oil-thickness distribution over the whole monolayer 
region is known. 

We now examine the solution A(7)  satisfying ( 3 . 1 3 ~ )  with the boundary conditions 
(3 .13b) .  Since this solution must approach the main stream condition exponentially 
(Goldstein 1965), we try as a first guess to the solution 

AO(7) - A + edqP(7) (3.21) 

where d and b are constants (b  > 0) with P(7)  bounded for 7 -+ 00. Substituting (3.21) 
into (3.1 3 a )  and neglecting terms containing e-2bq, it  is seen that A, satisfies 

( 2 p - 3 ) A t + ( p - l ) A h :  = 0, 

which has a solution satisfying h,(O) = 0, &(a) = 0 which is of the form (3 .21) ,  namely 

P - 1  h,(7) = A( 1 -e-gAq) where q = - 
213-3' 

To improve this solution, we substitute A, for the neglected terms in (3 .13a)  to obtain 
an equation for A,, an improved value of A, as 

( 2 p  - 3 )  h: + ( p  - 1 )  Ah; = - ( p  - 1 )  (A, - A )  A: 

and find a solution A, that satisfies the conditions h,(O) = 0, Ai(co)  = 0. In fact, we can 
improve the degree of accuracy by repeatedly using the formula 

( 2 p - 3 ) A I + ( p -  1)AAk = ( A ~ - l ) 2 - ( ~ - l ) ( A , - l - A ) A ~ - l ,  m = 1 ,2 ,  ... (3.22) 

with the boundary conditions A,(O) = 0,&(00) =O. The solution A, will then be of 
the form, 

A,(r]) = A(1+Be-9-4q+Ce-~Aq+De-sa.4q+ . . .) (3.23) 

the value of A then being determined by the requirement that &(O) = 1.  By examining 
the coefficients of the exponential terms for all possible values ofp (i.e. for 2 < p < co), 
it appears that the solution (3 .23 )  for A is convergent as m + 00 for all 7 3 0. Thus 
for example, the case p = 3 (for which n = 8 )  has the solution (3 .23)  which may be 
written as 

A(7)  = A [ 1 -  1-1354e-8A7+0-1582e-~A7-0*0234e-2dq 

+ 0.0006 e - W  + . . .] with A = 1.3006. 
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For the case p = co (for which n = 0) ,  ( 3 . 1 3 ~ )  becomes 

with 
2A" + Ah" = 0 

A = O ,  h ' = 1  at q = O  and A'+O as r+m. 

(3.24) 

This represents the laminar boundary-layer flow on a flat plane solid surface moving 
with constant velocity in its own plane in the positive-x direction while the solid 
surface is being continuously produced at x = 0 so that this end x = 0 is fixed in 
space. Sakiadis (1961) solved this problem numerically and his solution is in good 
agreement with the obtained series solution (3.23) which for this case (1, = co) may 
be written as 

A(q)  = A[l - 1.3090 e-b-49 + 0.3906 e--4q - 0.0868 e4-47 

+ 0.0052 e-2Aq + . . .] with A = 1.6144. 

4. Behaviour in the neighbourhood of the leading edge Z = Z* 

To obtain the solution of the boundary-layer equations (2.10) near the leading edge 
of the monolayer, we locate the origin of co-ordinates at the leading edge (ie. at 
p = 2*, X = 0 )  and introduce a variable P such that 

p =a*-$?. 
From (2.18), U -+ @* on Z = 0 as P -+ 0. Thus, letting the boundary-layer thickness 
be proportional to 8 as 2 -+ 0, we see from an order-of-magnitude estimate of the 
different terms in (2.10) that q = 4 so that in the limit of 2 -+ 0, (2.12) reduces to 

gi?*&& - z,Bz@ + X $ X S  = x#Ei. (4.1) 

Since q = Q, we define 7 = 2 2 4  and try as a solution z = @f(q) where, since 

u = %,# ot &O 

as $? -+ 0, s must be taken as Q. Equation (4.1) then becomes 

p - *fT + @*qf = 0 

with the boundary conditions 

(4.2a) 

f =  0, f ' =  $Z* on 7 = 0 

f + O  as q+m. (4.2b) 

If we write f ( q )  = @*v + z(y), then the equations and boundary conditions for 2 are 
obtained as 

where 
;t;" - iff" = 0 

(4.3) 
- -! x = x  = o  on q = O ;  r -  -fa* as q- foo.  

Hence, 2 is given by 

where g is the dimensionless stream function for the boundary-layer flow over a flat 

f = - ( @ * ) W p * ) * q )  
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FIGURE 2. The finite difference square mesh connecting the leading edge 
region to the bulk boundary region. 

plate (i.e. the Blasius boundary layer) (see Schlichting 1960). Thus the boundary 
layer near the leading edge is approximately the Blasius boundary layer with the 
monolayer there behaving like an advancing rigid flat plate. The solution for the 
function g(3) is well known (see for example Howarth 1938). Thus 

= ii+[$~*q - ($Z*)+~((~Z*)&T)] as 2 +- o (4.4) 
so that 

Integrating this result between 2 = 0 and a general value 2 and making use of the 
fact that u = u23 [i.e. u* = 1-01 at the leading edge (2 = 0) ,  we obtain 

u*(2) - 1 - 2(@*)+g"(0) & as 2 --f 0. (4.5) 

From the monolayer equation of state [i.e. u* = u*(h*)] one cam then derive the 
asymptotic form of h* for 2 -+ 0. 

5. Solution procedure 
Since the flow field changes rapidly near 5 = 0 and Z = P* (see § Q  3 and 4) we define 

near these two points a bulk boundary region (0 < 5 < gb) and a leading edge region 
(33, < 2 < 5*) respectively where 5, and P* -5, are small, and use in these regions the 
analytical solutions derived in $ 5  3 and 4. For the remaining region (5, < 5 < Pi) a 
numerical computation is made using a finite difference method with a square grid 
(figure 2) with I and J nodal lines in the P and Z directions respectively. The values 
of x, h*, Z, (and any partial derivatives of these quantities that are required) at  the 
two edges 5 = 5 b  and 5 = 2, of the grid are then determined by the analytic solutions 
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in the bulk boundary and leading edge regions. Rather than considering 5* as an 
unknown i t  is more convenient to consider the grid size I as an unknown with the 
value of Z* then being determined by 

z* = 5*+z(I+l)+61 (5.1) 

where 6, = 2* - 3, is the length of the leading-edge region. Using the conventional 
Taylor series expansion method to approximate the various derivatives appearing 
in the governing equations (2.12), (2.13) and boundary conditions (2.14), the finite 
difference formulae are obtained (see for example Crandall 1956, p. 246). The finite 
difference equation that replaces (2.12) is applied at nodal points 

(i,j) [l < i < I and 3 < j < J -  21 

while the finite difference equation replacing the monolayer continuity equation 
(2 .13~)  is applied at mid-way between nodal points i,i+ 1[0 < i < I]. The problem 
is thus reduced to solving a set of algebraic nonlinear equations for the values of X i , j  

at the nodal points (i,j) [l < i f I ,  2 < j < 4, the values of ?it, h*{[l < i < I] and I 
(Foda & Cox 1977). 

This set of nonlinear algebraic equations is replaced by an equivalent sequence of 
linear problems, the solution of which forms a sequence of solutions (x,, ?ion, hX and 
I,, n = 0,1,2, . . . where n = 0 corresponds to the initial assumed guess for the solution) 
which converges to the required solution as n --f m. 

Ifthevaluesofxi*j(l < i < I , 2  <j < J),(?i$),(l < i < I ) , h z ( l  < i < I) and1,are 
known, linear equations for Xk!,, (?i(),+,, h z 2  and I,+, are found by writing formally 

where ci (i = 1,4) are small quantities which tend to zero as n --f co. Then by substi- 
tuting (5.2) into the nonlinear finite difference equations and neglecting quadratic 
terms in ei (i = 1, a), we obtain equations which may be written in the matrix form 

AnUn+,= Cn (5.3) 

where A, is an m by m dimensional matrix and Un+, and Cn are m-dimensional vectors. 
A, and C, are functions of the known values of Ti’, (Ti:),, h; and 1, while Un+, is the 
vector formed by the unknowns. The number of equations m is 

m = I J + I +  1 

which is seen to be the same as the number of unknowns. 
Examining the properties of matrix A,, we find that it is a square, non-symmetric, 

sparse matrix. Thus the conjugate gradient method (Hestenes & Stiefel 1952) is found 
to be the most suitable method of solution of (5.3) as far as convergence and stability 
are concerned. This method is essentially a relaxation method which was used because 
of its fast convergence for the solution of linear systems. Thus the solutions to the 
sequence of linear problems was found and continued until a solution was obtained 
that did not change with further iterations. 
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6. Numerical results 

The computer program for the solution to this problem was designed to accept the 
monolayer constitutive relation (2.2) between a* and h* in either analytical or tabu- 
lated form. In order to obtain, in a qualitative manner, the monolayer behaviour as 
it spreads on water the above numerical calculation was carried out for two analytical 
constitutive relations [a* = a*(h*)] which were chosen to be 

a* = {exp ( -ah*) + h*}-s (6.1) 

with a = 8 and a = 1. This form of u*(h*) was chosen so as to satisfy conditions: 

Sheludko (1  966) ; 

are constants. 
In fact, for h* -+ 0, we have for a 

(i) In the vicinity of the bulk boundary (as h* -+ 00) u* - h*-3 as suggested by 

(ii) In  the vicinity of the leading edge (as h* -+ 0) cr* - 1 -Ah*a where A and a 

1, 

CT* - 1-3(1-a)h* as h*-+O, 

g* - 1 - 1.5h*2 as h* -+ 0. 
and for a = 1, 

It should be noted that the linear relation (6.2) between a* and h* as h* -+ 0 is of 
importance as this represents the case of a film in the gaseous phase (see Adamson 
1967) this being a situation likely to occur for many liquid films when h -+ 0. This 
situation occurs for one example (a = 3 )  but not for the other. 

The calculated velocity field %,(Z) along the monolayer and the oil layer thickness 
h* are shown in figures 3 and 4 respectively for each of the assumed a*(h*) relations. 
It is seen that almost exactly the same results are obtained for the cases a = 8 and 
a = 1. In  fact the value of Z*, determining the position of the leading edge (see (2.16)) 
was found to be equal to 1.39 for the example a = 8 and equal to 1.36 for a = 1.0. 
It is also noticed from figures 3 and 4 that although the asymptotic solution near the 
bulk boundary (3 = 0) was applied only close to the origin (0 < Z < 0*25), the ob- 
tained solutions for 5, and h* seem to obey approximately this asymptotic solution 
for much larger values of 5 (up to 0.6). Also, it is seen from the figures that the solutions 
for 5, and h* do not deviate much from the leading edge asymptotic solution, (valid 
for Z* - 0.1 < Z < Z*) when applied to much smaller values of 5 (down to Z = 1.1 
for which Z* -Z = 0.3). Computed velocity profiles U ( Z )  in the boundary layer have 
been plotted in figure 5 for various values of 5 for the cam a = 8. It is observed that 
the boundary-layer thickness increases from zero at  Z = 0 to a maximum at approxi- 
mately Z = 0.85 and thereafter decreases to zero a t  the leading edge (a = 1.39). 

7. Experiment : Determination of g*(h*) 

The theory described in the previous sections was verified experimentally by 
examining the spreading of Dow Corning Silicone 200 fluid of 1000 cSt on the surface 
of distilled water at rest and contained in a Plexiglas rectangular channel (120 x 9 x 5 
cm deep). This sat in a covered chamber to prevent atmospheric contamination (Foda 
& Cox 1977). The spreading fluid was deposited on the water surface by means of a 
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FIGURE 3. Dimensionless velocity field a,, along the spreading monolayer as a function of 
dimensionless position 5. Curves A and B refer to the results for the constitutive relation given 
by (6.1) with a = and a = 1 respectively. The dashed lines correspond to asymptotic solutions 
obtained for the bulk-boundary and leading-edge regions. 
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FIQURE 4. Dimensionless monolayer thickness h* aa a function of position I. Curves A and B 
refer to results for the constitutive relation given by (6.1) with a = 8 and a = 1 respectively. 
The dashed lines correspond to asymptotic solutions obtained for the bulk-boundary and 
leading-edge regions. 

Plexiglas plate (9 x 3 cm) one longitudinal edge of which was trimmed to produce a 
sharp edge. This deposition was done by first spreading a thin uniform film of the 
Silicone fluid on the plate at and near the sharp edge. The plate was then placed across 
the width of the channel at one end and lowered so that the sharp edge just touched 
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l i o = O . 5 8 7  0.675 0.770 0.901 0.990 1.04 1.04 

FIUIJRE 5. Boundary-layer velocity profiles E ( 2 )  for various positions i t  for the case with con- 
stitutive relation (6.1) with a = #. The dashed line shows how the boundary-layer thickness 6 
(defined as the value of Z at which Ti drops to 0.05 Tio) depends on position 5. 
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FIGURE 6. Spreading of monolayer against a uniform flow (of velocity U) 
with the bulk boundary fixed at x = 0. 

the water surface. This ensured that there would be no gravity-viscous region (see 
Di Pietro et al. 1978) of spreading, the monolayer starting at  the plate with a surface 
tension (glZ + r13). Thus the conditions required for the theory are reproduced. 

In  order to compare the theory with experiment it is necessary to determine the 
constitutive relation cr* = g*(h*) for the spreading liquid used. This was done by 
examining the steady state situation in which the Silicone fluid spreads against a 
uniform flow of the water along the channel mentioned above. This flow was produced 
by pumping the water along the channel. Thus after a uniform flow had been set up 
(with flow velocity of U, say), the Silicone fluid was deposited on the water surface at  
the downstream end using the Plexiglas plate as described above. The resulting mono- 
layer then spread upstream against the flow and reached a steady state equilibrium 
position (as described by Di Pietro et al. 1978) as shown in figure 6. When this had 
occurred, the whole monolayer surface was then tagged by lightly sprinkling talcum 
powder on it (the talcum powder having been cleaned in the manner described by 
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Huh, Inoue & Mason 1976). The flow velocity along the channel was then reduced to 
a new value (U, say) so that the monolayer lengthened and formed a new steady state 
equilibrium. The resulting movement of the talcum-power particles was photographed 
using cinephotography . The distances between different pairs of neighbouring talcum- 
powder particles was measured for the two steady state equilibrium situations (corres- 
ponding to the flow velocities U, and U,). 

Thus if initially (with flow velocity U,) the projected distance measured along the 
channel between neighbouring talcum powder particles A and B is AB (see figure 6) 
and if finally (with flow velocity U,) the projected distance between the particles is 
A’B’, then by continuity 

M .  Foda and R. #. Cox 

h*(AB) = h,*(A’B‘) (7.1) 

where h: and h,* are the values of h* at the talcum-powder particles for the flow veloci- 
ties U, and U, respectively. Also since the surface velocity u,, must be identically zero 
at all points on the monolayer for each of the steady state situations (see Di Pietro et al. 
1978), the boundary layer in the water is of Blasius type so that for a flow velocity of 
U ,  the dimensionless surface tension cr* of the monolayer covered water surface a t  a 
distance x from the point of deposition is obtained by integrating (2.6) with the known 
value of ~ , , ( x )  for this boundary layer. Thus one obtains 

where L is the monolayer length, which since u* = 0 a t  x = 0 (and h* = GO), must be 
given by 

so that (7.2) may be written as 

a*(%) = 1 -{(&-%)/L]k (7.4) 

Thus, using this result the value of cr* can be calculated at the talcum-power particles 
for each of the steady state equilibrium positions. Thus the values cr: and a,* of cr 
corresponding to h* and h,* may be found. By repeating this process for different 
neighbouring pairs of talcum-powder particles one can build up the relation between 
CT* and h*. Naturally the values of h* obtained are arbitrary to the extent that they 
can all be multiplied by an arbitrary constant. However since this is equivalent to 
changing the definition of H ,  any convenient normalization of h* (by choosing h* = 1 
at some point of the monolayer) may be adopted. In  order to ensure that the relation 
(7.4) is valid, it was shown that for all experiments undertaken that (i) thickness of 
the boundary layers a t  the monolayer and channel bottom were much less than the 
water depth and (ii) the effect of the channel side walls were negligible. 

The obtained relation between cr* and h* for the Silicone fluid used (1000 cSt) is 
plotted in figure 7 from which it is seen that u* decreases monotonically from I to 0 
as h* increases from zero. An examination of these results for values of h* > 4 shows 
that the asymptotic form (3.7) for large values of h is satisfied with the index p 2: 2.4. 
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FIUTJRE 7. Experimentally determined constitutive relation (T* = a*@*) for 
the Dow Corning 200 Silicone (1000 cSt) monolayer. 

8. Experiment : Time-dependent spreading of monolayer 
To undertake the experiment corresponding to the situation (considered in $0 2 to 6) 

where a monolayer spreads along a channel from a fixed position, the channel (des- 
cribed in 0 7) was first filled with distilled water to a depth of 3.5 cm and left for 12 
hours to  allow the water to reach room temperature and to eliminate effects of water 
movement. The Silicone fluid (1000 cSt) was then deposited on the water surface at  
one end of the channel using the Plexiglas plate in the manner described in $7. Both 
before and during the spreading of the monolayer along the channel, cleaned talcum- 
powder powder was sprinkled on the water surface just ahead of the point of deposition 
of the Silicone fluid. This was done by rotating a horizontal hollow cylinder with small 
holes in its surface which initially contained the talcum-powder powder. The move- 
ment of the talcum-powder particles on the moving monolayer was recorded by cine- 
photography and from an analysis of the film the velocity uo of the monolayer as a 
function of distance z (from the deposition point) and time t was derived. 

9. Results and Discussion 
From the monolayer velocity u,, measured in the manner described in the previous 

section, Go can be calculated as a function of Z for various times t .  This has been 
tabulated in table 1 from which it is observed that except for small values of ii? for 
which the experimental results were not accurate, the same value of Go is obtained 
for all values of t if 5 is fixed. Thus Go is a function only of 2 indicating that we have 
in fact reproduced experimentally a situation corresponding to the similarity solution 
considered in $$ 2 to 6. These experimental values of Tio have been plotted as a function 
of in figure 8. 



60 M. Foda and R. Q. Cox 

Experimental values for 3, 
(calculated a t  various times t )  

- 
X 

0. 1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 1.0 
1.15 1.0 

Avemge Standard 
deviation value of 

Go = asv in ii, 

?3 

0.697 0.586 0.581 0.380 0.553 
0.700 0.701 0.683 0.685 0.500 0.653 

0.720 
0.689 0.710 0.729 0.69 0.70 0.682 0.70 

0.781 0.781 0.76 0.75 0.77 0.77 0.77 0.77 0.77 
0.89 0.89 0.89 0.89 0.89 0.88 0.89 
0.90 0.88 0.89 0.88 0.89 0.89 
0 91 0 90 0.90 0.91 0.91 
0.97 0.96 0-97 0.967 
0.99 1.00 
1.00 1.00 

0.722 0.700 0.735 0.730 0.730 0.715 0,728 

TABLE 1. Values of 2, as a function of 5 obtained from the 
experimentally obtained values of u0(x,  t )  along the monolayer. 

0.114 
0.08 
0.0 16 
0.01 1 
0.0096 
0.004 
0.008 
0-005 
0.005 
0.007 
0.00 
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0 0.3 0.6 0.9 1.2 I .5 

x 
FIQURE 8. Comparison between the theoretical (solid line) velocity field G,,(Z) along the mono- 
layer and the experimental values (aav in table 1) for the Dow Corning’200 Silicone (1000 cSt) 
monolayer. 

For the constitutive relation c* = c*(h*) determined experimentally (see 9 7) for 
the Silicone fluid (1000 cSt), the numerical computation discussed in 3 6 was used to 
obtained theoretically the value of Ti,, as a function of Z for the similarity solution. 
This has also been plotted on figure 8 from which it is seen that there is good agree- 
ment with the experimental results. In particular the value of Z* (which determines 
how the leading edge moves) is found to be 1.375 for the computed similarity solution 
and to be 1.33 from the experimental results. 
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It has been noted from figures 3 and 4 that the form of the constitutive relation 
a* = a*(h*) seems to have little influence on the similarity solution (at least for the 
examples considered here). In  fact the two examples considered in $ 6  give values of 
Z* equal to 1.36 and 1.39 while the relation cr* = a*(h*) for the Silicone fluid (1000 cSt) 
gave E* = 1.375. 

It should also be noted that the experiments on monolayer spreading by Huh et al. 
(1975), Garrett & Barger (1970) and Lee (1971), although not designed to reproduce 
the similarity solution discussed here, also gave values of Z* of approximately 1.33. 

This work was supported by the Natural Sciences and Engineering Research Council 
of Canada under Grant A7007. 
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